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1. Introduction

The black hole attractor mechanism has been an active subject over the past few years in

string theory. This is originated from the observation that there is a connection between the

partition function of four-dimensional BPS black holes and partition function of topological

strings [1].

The attractor mechanism states that in the extremal black hole backgrounds the moduli

scalar fields at horizon are determined by the charge of black hole and are independent of

their asymptotic values. One may study the attractor mechanism by finding the effective

potential for the moduli fields and examining the behavior of the effective potential at its

extremum, i.e., in order to have the attractor mechanism, the effective potential must have

minimum in all directions. The entropy of black hole is then given by the value of the

effective potential at its minimum. Using this, the entropy of some extremal black holes

has been calculated in [2].

Motivated by the attractor mechanism, it has been proposed by A. Sen that the entropy

of a specific class of extremal black holes in higher derivative gravity can be calculated using

the entropy function formalism [3]. According to this formalism, the entropy function

for the black holes that their near horizon is AdS2 × SD−2 is defined by integrating the

Lagrangian density over SD−2 for a general AdS2 ×SD−2 background characterized by the

size of AdS2 and SD−2, and taking the Legendre transform of the resulting function with

respect to the parameters labeling the electric fields. The result is a function of moduli

scalar fields as well as the size of AdS2 and SD−2. The values of moduli fields and the

sizes are determined by extremizing the entropy function with respect to the moduli fields

and the sizes. Moreover, the entropy is given by the value of the entropy function at the
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extremum.1 Using this method the entropy of some extremal black holes have been found

in [3 – 5].

For non-extremal black holes, one expects to have no attractor mechanism. An intu-

itional explanation of attractor mechanism has been proposed in [7]. According to which

the physical distance from an arbitrary point to the horizon is infinite for black holes which

have attractive horizon. While the physical distance is infinite for extremal black holes, it

is finite for non-extremal cases. Alternatively, it has been shown in [8] that the values of the

moduli fields at the horizon of non-extremal black holes depend on the asymptotic values of

the scalar fields, hence, one expects to have no attractor mechanism for the non-extremal

cases.

It is natural to ask if the entropy function formalism works for a non-extremal black

hole. We speculate that the entropy function formalism works if the background is some

extension of AdS at its near horizon. Moreover, for this background the entropy function

has saddle point at the near horizon. In general, non-extremal black hole/brane solutions

can be classified into three classes: 1) Solutions with no moduli, 2) Solutions with constant

moduli, 3) Solutions with constant moduli at the near horizon. In this paper, we would

like to consider the non-extremal black-branes whose near horizons are Schwarzschild black

hole in AdSp+2 × SD−(p+2). For p = 3, the solution is the non-extremal D3-brane with

constant moduli. For p = 2, 5, the solutions are the non-extremal M2 and M5-branes with

no moduli. We will discuss also the non-extremal black hole solutions with constant moduli

at the near horizon which has been considered in [9].

An outline of the paper is as follows. In section 2, we review the non-extremal solutions

of IIB/M theory. In sections 3 to 5, using the entropy function formalism we derive the

known results for the entropy of D3, M2 and M5-branes in terms of the temperature. We

also show that in all cases the entropy is given by the entropy function at its saddle point.

In section 6 we show that the higher derivative terms do not respect the symmetries of the

solution at tree level and so the entropy function formalism does not work. Instead, we

use the Wald formula directly to find the correction to the entropy. We conclude with a

discussion of our results in the last section.

2. Review of the non-extremal solutions

In this section, we review the non-extremal solutions of IIB/M theory. The two-derivative

effective action for IIB/M theory in Einstein frame is given by

S =
1

16πGD

∫

dDx
√−g

{

R − 1

2
gµν∂µφ∂νφ − 1

2

∑ 1

n!
F 2

(n) + · · ·
}

, (2.1)

where D = 10 for IIB and D = 11 for M theory. In above Lagrangian φ is the dilaton

which appears only in IIB theory, and F(n) is the electric field strength where n = 1, 3, 5 for

1It is assumed that in the presence of higher derivative terms there is a solution whose near horizon

geometry is AdS2×S
D−2. In the cases that the higher derivative corrections modify the solution such that

the near horizon is not AdS2 × S
D−2 anymore, one cannot use the entropy function formalism. In those

cases one may use the Wald formula [6] to calculated the entropy directly.
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IIB theory and n = 4, 7 for M theory. The n = 5 field strength tensor is self-dual, hence,

it is not described by the above simple action. It is sufficient to adopt the above action

for deriving the equations of motion, and impose the self-duality by hand. Dots represent

fermionic terms as well as NS-NS 3-form field strength for IIB theory.

We are interested in non-extremal solutions whose near horizon are product space of

AdS with a sphere. D3, M2 and M5-branes have this property. These solutions are given

by the following (see e.g. [10]):

ds2 = H− d−2
D−2

(

− fdt2 +

p
∑

i=1

(dxi)2
)

+ H
p+1
D−2

(

f−1dr2 + r2(dΩd−1)
2

)

,

eφ = 1 , Fti1···ipr = ǫi1···ipH
−2 Q

rd−1
,

H = 1 +

(

h

r

)d−2

, f = 1 −
(

r0

r

)d−2

, (2.2)

where D = (p + 1) + d and d is the number of dimensions transverse to the p-brane. Note

that for p = 3, the above field strength is only the electric part of the self-dual F(5). We

will see shortly that in the entropy function formalism one needs to consider only this part

of F(5). The relation between h and Q is

h2(d−2) + hd−2rd−2
0 =

Q2

(d − 2)2
. (2.3)

For r0 = 0 we obtain the extremal solution, depending only on a single parameter, Q,

related to the common mass and charge density of the BPS p-branes.

For r0 6= 0 a horizon develops at r = r0. The near horizon geometry which is described

by a throat can be found by using the throat approximation where r ≪ h. In this limit

the relation (2.3) simplifies to hd−2 = Q/(d − 2), and the non-extremal solution becomes

ds2 =
( r

h

)

2(d−2)
p+1

{

−
[

1 −
(r0

r

)d−2
]

dt2 +

p
∑

i=1

(dxi)2
}

+

(

h

r

)2 [

1 −
(r0

r

)d−2
]−1

dr2

+h2(dΩd−1)
2 ,

eφ = 1 , Fti1···ipr = (d − 2)ǫi1···ip
rd−3

hd−2
, (2.4)

where the geometry is the product of Sd−1 with the Schwarzschild black hole in AdSD−d+1.

3. Entropy function for non-extremal D3-branes

Following [3], in order to find the entropy function for non-extremal D3-branes one can

deform the near horizon geometry as

ds2
10 = v1

[

r2

h2

{

−
(

1−
(r0

r

)4
)

dt2 +
3

∑

i=1

(dxi)2

}

+
h2

r2

(

1 −
(r0

r

)4
)−1

dr2

]

+ v2h
2(dΩ5)

2,

eφ = 1 , Fti1i2i3r = 4ǫi1i2i3

(

v1

v2

)5/2 r3

h4
≡ ǫi1i2i3e1 , (3.1)
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where v1 and v2 are supposed to be constants. Note that we have considered only the

electric part of the self-dual F(5). The function f is define to be the integral of Lagrangian

density over the horizon H = S3 ×S5. The result of inserting the background of (3.1) into

f is

f(v1, v2, e1) ≡ 1

16πG10

∫

dxH√−gL

=
V3V5h

2r3

16πG10
v
5/2
1 v

5/2
2

(

20(v1 − v2)

v1v2h2
+

h6

2v5
1r

6
e2
1

)

, (3.2)

where V3 and V5 are the volumes of 3 and 5-sphere with radius one. The electric charge

carries by the brane is given by

q1 =
∂f

∂e1
=

V3V5

16πG10
Q . (3.3)

Now we define the entropy function by taking the Legendre transform of the above integral

with respect to electric field e1, that is

F (v1, v2, q1) ≡ e1
∂f

∂e1
− f

=
V3V5h

2r3

16πG10
v
5/2
1 v

5/2
2

(

−20(v1 − v2)

v1v2h2
+

h6

2v5
1r

6
e2
1

)

. (3.4)

Substituting the value of e1 and solving the equations of motion

∂F

∂vi
= 0 , i = 1, 2 , (3.5)

one finds the following solution

v1 = 1 , v2 = 1 . (3.6)

Let us now consider the behavior of the entropy function around the above critical point.

To this end consider the following matrix

Mij = ∂vi∂vj F (v1, v2) . (3.7)

Ignoring the overall constant factor, the eigenvalues of this matrix are 10(5 ±
√

89). This

shows that the critical point v1 = v2 = 1 is a saddle point of the entropy function.

Let us now return to the entropy associated with this solution. It is straightforward

to find the entropy from the Wald formula [6]

SBH = − 8π

16πG10

∫

dxH
√

gH
∂L

∂Rtrtr
gttgrr . (3.8)

For this background we have Rtrtr =
r4−3r4

0
v1h2r4 gttgrr and

√−g = v1

√

gH . These simplify the

entropy relation to

SBH = − 8πh2r4

16πG10(r4 − 3r4
0)

∫

dxH√−g
∂L

∂Rtrtr
Rtrtr = − 2πh2r4

r4 − 3r4
0

∂fλ

∂λ

∣

∣

∣

∣

λ=1

, (3.9)
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where fλ(v1, v2, e1) is an expression similar to f(v1, v2, e1) except that each Rtrtr Riemann

tensor component is scaled by a factor of λ.

To find ∂fλ
∂λ |λ=1 using the prescription given in [3] and [4], we note that in addition

to Rtrtr the other Riemann tensor components Rti1ti1 , Rri1ri1, and Ri1i2i1i2 where i1, i2 =

1, 2, 3 are all proportional to v1, i.e.,

Rtrtr = v1
3r4

0 − r4

h2r4
, Rri1ri1 = v1

r4 + r4
0

h2(r4 − r4
0)

,

Rti1ti1 = v1
r8
0 − r8

h6r4
, Ri1i2i1i2 = v1

r4 − r4
0

h6
. (3.10)

Hence, one should rescale them too. We use the following scaling for these components

Rti1ti1 → λ1Rti1ti1 , Rri1ri1 → λ2Rri1ri1 , Ri1i2i1i2 → λ3Ri1i2i1i2 . (3.11)

Now we see that fλ(v1, v2, e1) must be of the form v
5/2
1 g(v2, λv1, e1v

−5/2
1 , λ1v1, λ2v1, λ3v1)

for some function g. Then one can show that the following relation holds for fλ and its

derivatives with respect to scales, λi, e1 and v1:

λ
∂fλ

∂λ
+ 3λ1

∂fλ

∂λ1
+ 3λ2

∂fλ

∂λ2
+ 3λ3

∂fλ

∂λ3
+

5

2
e1

∂fλ

∂e1
+ v1

∂fλ

∂v1
− 5

2
fλ = 0 . (3.12)

In addition, there is another relation between the rescaled Riemann tensor components at

the supergravity level which can be found using (3.10)

3
∂fλ

∂λ1
|λ1=1 + 3

∂fλ

∂λ2
|λ2=1 + 3

∂fλ

∂λ3
|λ3=1 =

3(3r4 + r4
0)

r4 − 3r4
0

∂fλ

∂λ
|λ=1 . (3.13)

Replacing the above relation into (3.12) and using the equations of motion, one finds that
∂fλ
∂λ |λ=1 = −1

4
r4−3r4

0
r4 F . It is easy to see that the entropy is proportional to the entropy

function up to a constant coefficient, i.e.,

SBH =
πh2

2
F =

V3V5h
2r3

0

4G10
. (3.14)

One may write the entropy in terms of temperature. The relation between r0 and temper-

ature can be read from the metric which is r0 = πh2T , so

SBH =
π2

2
N2V3T

3 , (3.15)

where we have used the relations V5 = π3, h4 = Nκ10

2π5/2 , and 2κ2
10 = 16πG10 where N is

the number of D3-branes. This is the entropy that has been found in [11]. Note that

for extremal case, r0 = 0, the entropy function is exactly the same as non-extremal case

however, the value of entropy is zero.

We have seen that the entropy function formalism works very well here despite the fact

that the horizon is not attractive. To see the latter fact, we note that the only scalar field in

this theory is constant everywhere, and it does not appear in the Lagrangian. Therefore,
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it is better to check the attractor property by calculation of the proper distance of an

arbitrary point from the horizon, i.e.,

ρ =

∫ r

r0

h

r

(

1 − r4
0

r4

)− 1
2

dr =
1

2
h log

[

r2

r2
0

+

√

r4

r4
0

− 1

]

, (3.16)

the above value is finite for non-extremal case but it is infinite for extremal case i.e., r0 → 0.

Hence, although the attractor mechanism does not work for this non-extremal case, the

entropy function formalism works and it gives the correct value of the entropy as the saddle

point of the entropy function.

4. Entropy function for non-extremal M2-branes

The near horizon geometry of non-extremal M2-branes is described by the Schwarzschild

AdS4 × S7. The most general solution consistent with the symmetry of AdS4 × S7 is

ds2 = v1





y2

h2

{

−
(

1−
(

y0

y

)3
)

dt2+

2
∑

i=1

(dxi)2

}

+
h2

4y2

(

1−
(

y0

y

)3
)−1

dy2



+v2h
2(dΩ7)

2,

Fti1i2y = 3ǫi1i2

v2
1

v
7/2
2

y2

h3
≡ ǫi1i2e1 , (4.1)

where we have defined the new variable y = r2/h. In above v1 and v2 are constants. The

value of entropy function in this case is given by

F =
V2V7h

5y2

32πG11
v2
1v

7/2
2

(

−42v1 − 48v2

v1v2h2
+

2h4

v4
1y

4
e2
1

)

, (4.2)

where V2 and V7 are the volume of 2 and 7-sphere with radius one. Substituting the value

of e1 and then solving the equations of motion gives v1 = v2 = 1. Moreover, the eigenvalues

of the matrix (3.7) in this case are 3(83 ±
√

12937). So this shows again that the critical

point v1 = v2 = 1 is the saddle point of the entropy function.

The entropy associated with this background is given by the Wald formula

SBH = − 8π

16πG11

∫

dxH
√

gH
∂L

∂Rtyty
gttgyy . (4.3)

For the background (4.1) we find Rtyty =
4(y3−y3

0)
v1h2y3 gttgyy and

√−g = 1
2v1

√

gH so that the

entropy can be written as

SBH = − 4πh2y3

16πG11(y3 − y3
0)

∫

dxH√−g
∂L

∂Rtyty
Rtyty = − πh2y3

y3 − y3
0

∂fλ

∂λ

∣

∣

∣

∣

λ=1

. (4.4)

where again we have rescaled every factor Rtyty by λ in fλ. In addition to Rtyty , there are

three other types of Riemann curvature tensors which are proportional to v1. These are

Rti1ti1 , Ryi1yi1 and Ri1i2i1i2 with i1, i2 = 1, 2, i.e.,

Rtyty = v1
y3
0 − y3

h2y3
, Ryi1yi1 = v1

2y3 + y3
0

h2(2y3 − 2y3
0)

,

Rti1ti1 = −v1
4y6 − 2y3y3

0 − 2y6
0

h6y2
, Ri1i2i1i2 = v1

4y4 − 4yy3
0

h6
. (4.5)

– 6 –



J
H
E
P
0
5
(
2
0
0
7
)
0
4
3

Rescaling them with λ1, λ2 and λ3 as in (3.11) and noting that fλ(v1, v2, e1) must be of

the form v2
1g(v2, λv1, e1v

−2
1 , λ1v1, λ2v1, λ3v1) for some function g, one finds the following

relation:

λ
∂fλ

∂λ
+ 2λ1

∂fλ

∂λ1
+ 2λ2

∂fλ

∂λ2
+ λ3

∂fλ

∂λ3
+ 2e1

∂fλ

∂e1
+ v1

∂fλ

∂v1
− 2fλ = 0 , (4.6)

using (4.5), one finds

2
∂fλ

∂λ1

∣

∣

∣

∣

λ1=1

+ 2
∂fλ

∂λ2

∣

∣

∣

∣

λ2=1

+
∂fλ

∂λ3

∣

∣

∣

∣

λ3=1

=
5y3 + y3

0

y3 − y3
0

∂fλ

∂λ

∣

∣

∣

∣

λ=1

. (4.7)

Replacing the above relation into the (4.6), one finds ∂fλ
∂λ |λ=1 = −y3−y3

0
3y3 F and therefore

SBH =
πh2

3
F =

V2V7h
5y2

0

4G11
, (4.8)

this gives a non-zero value for entropy. One may write the entropy in terms of tempera-

ture. From the metric (4.1) we find the relation between non-extremality parameter and

temperature as y0 = 2πh2T/3. So the entropy becomes

SBH = 27/23−3π2V2N
3/2T 2 (4.9)

where we have used the relations V7 = π4/3, h9 = N3/2 κ2
11

√
2

π5 and 2κ2
11 = 16πG11 where N

is the number of M2-branes. This is the entropy, which has been found in [11]. Note again

that the extremal case can be found by taking y0 = 0. The result for entropy function is

exactly the same as non-extremal case but the value of entropy is zero.

To check the attractor mechanism, we note that there is no scalar field in this theory

so we calculate the proper distance of an arbitrary point from the horizon, i.e.,

ρ =

∫ y

y0

h

2y

(

1 − y3
0

y3

)− 1
2

dy =
1

3
h log





(

y

y0

)
3
2

+

√

(

y

y0

)3

− 1



 , (4.10)

which is finite for the non-extremal case but is infinite when y0 → 0 in the extremal case.

This shows again that although the horizon is not attractive point, the entropy function

formalism works and it gives the correct value for the entropy as the saddle point of the

entropy function.

5. Entropy function of non-extremal M5-branes

For non-extremal M5-branes the background is Schwarzschild AdS7 × S4 and the general

solution consistent with this symmetry is

ds2
11=v1





y2

h2

{

−
(

1−
(

y0

y

)6
)

dt2+

5
∑

i=1

(dxi)2

}

+4
h2

y2

(

1−
(

y0

y

)6
)−1

dy2



+v2h
2(dΩ4)

2 ,

Fti1···i5r=6ǫi1···i5
v
7/2
1

v2
2

y5

h6
≡ ǫi1···i5e1 , (5.1)
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where we have used the new coordinate y =
√

hr. The entropy function for this background

is

F =
2V5V4y

5

16πG11h
v
7/2
1 v2

2

(

−24v1 − 21v2

2v1v2h2
+

h10

8v7
1y

10
e2
1

)

, (5.2)

where V5 and V4 are the volume of 5 and 4-sphere with radius one. Substituting the value

of e1 and solving the equations of motion results v1 = v2 = 1. The eigenvalues of the

matrix (3.7) in this case are 3
8(29 ±

√
12937). Therefore it shows that the critical point

v1 = v2 = 1 is a saddle point of the entropy function.

Let us now turn to the entropy associated with this solution. The Wald formula in

(4.3) still holds here. Using the fact that for this background Rtyty =
y6−10y6

0
4v1h2y6 gttgyy and

√−g = 2v1

√

gH one finds

SBH = − 16πh2y6

16πG11(y6 − 10y6
0)

∫

dxH√−g
∂L

∂Rtyty
Rtyty = − 4πh2y6

y6 − 10y6
0

∂fλ

∂λ

∣

∣

∣

∣

λ=1

, (5.3)

where we have rescaled Rtyty in fλ. There are other Riemann tensor components propor-

tional to v1. These are Rti1ti1 , Ryi1yi1 and Ri1i2i1i2 with i1, i2 = 1 . . . 5, i.e.,

Rtyty = v1
10y6

0 − y6

h2y6
, Ryi1yi1 = v1

y6 + 2y6
0

h2(y6 − y6
0)

,

Rti1ti1 = −v1
y12 + y6y6

0 − 2y12
0

4h6y8
, Ri1i2i1i2 = v1

y6 − y6
0

4h6y2
. (5.4)

We rescale them by λ1, λ2 and λ3. Nothing that fλ(v1, v2, e1) must be of the general form

v
7/2
1 g(v2, λv1, e1v

−7/2
1 , λ1v1, λ2v1, λ3v1) for some function g, one finds

λ
∂fλ

∂λ
+ 5λ1

∂fλ

∂λ1
+ 5λ2

∂fλ

∂λ2
+ 10λ3

∂fλ

∂λ3
+

7

2
e1

∂fλ

∂e1
+ v1

∂fλ

∂v1
− 7

2
fλ = 0 , (5.5)

One finds also the following relation at the supergravity level:

5
∂fλ

∂λ1

∣

∣

∣

∣

λ1=1

+ 5
∂fλ

∂λ2

∣

∣

∣

∣

λ2=1

+ 10
∂fλ

∂λ3

∣

∣

∣

∣

λ3=1

= 10
2y6 + y6

0

y6 − 10y6
0

∂fλ

∂λ

∣

∣

∣

∣

λ=1

. (5.6)

Replacing the above relation in (5.5) one can show that ∂fλ
∂λ |λ=1 = −1

6
y6−10y6

0
y6 F and there-

fore

SBH =
2πh2

3
F =

V5V4y
5
0

4G11h
, (5.7)

this gives non-zero result. To write the entropy in terms of temperature we use y0 = 4πh2T
3

then

SBH = 273−6π3N3V5T
5 , (5.8)

where we have used the relations V4 = 8π2

3 , h9 =
N3κ2

11
27π5 and 2κ2

11 = 16πG11 where N is the

number of M5-branes. This is in agreement with the result in [11].
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We look now to the attractor mechanism. As we see, there is no scalar field in this case

so we check the attractor property by calculation of the proper distance of an arbitrary

point from the horizon

ρ =

∫ y

y0

2h

y

(

1 − y6
0

y6

)− 1
2

dy =
2

3
h log





(

y

y0

)3

+

√

(

y

y0

)6

− 1



 , (5.9)

which is finite for the non-extremal case but is infinite when y0 → 0 in the extremal case.

This shows again that although the horizon is not attractive for the non-extremal case,

the entropy function formalism works and it gives the correct value for the entropy as the

saddle point of the entropy function.

6. Higher derivative terms for non-extremal D3-branes

In the previous sections, we have seen that the entropy function works at two derivatives

level. It will be interesting to consider stringy effects and look at the entropy function

mechanism again. To this end, we consider the higher derivative corrections coming from

string theory. To next leading order the Lagrangian of IIB theory in Einstein frame is given

by

S =
1

16πG10

∫

d10x
√−g

{

R − 1

2
gµν∂µφ∂νφ − 1

2

∑ 1

n!
F 2

(n) + γe−3φ/2W

}

, (6.1)

where γ = 1
8ζ(3)(α′)3 and W can be written in terms of the Weyl tensors

W = ChmnkCpmnqCh
rspCq

rsk +
1

2
ChkmnCpqmnCh

rspCq
rsk . (6.2)

In what follows, we will show that (3.1) is no longer a solution of the above action. We

calculate the contribution of the above higher derivative terms to the entropy function F

δF =− γ

16πG10

∫

dxH√−gW =

= −γ
V3V5

16πG10

180

h6r13(v1v2)3/2

[

35

1944
(v1 − v2)

4r16 +
1

6
v2
2(v1 − v2)

2r8
0r

8 + v4
2r

16
0

]

, (6.3)

By variation of F + δF with respect to v1 and v2 one finds the equations of motion. Since

these equations are valid only up to first order of γ, we consider the following perturbative

solutions

v1 = 1 + γx , v2 = 1 + γy . (6.4)

For extremal case, r0 = 0, the corrections are zero, i.e., v1 = 1 = v2. Again the value of

entropy is proportional to r3 which gives zero. This is due to the fact that AdS5 × S5 is

an exact solution.
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For non-extremal case, by replacing the above solutions into the equations of motion,

one finds the following relations

∂(F + δF )

∂v1
= 0 −→ 3x + 5y =

27

h6

(r0

r

)16
,

∂(F + δF )

∂v2
= 0 −→ 5x − 13y = −45

h6

(r0

r

)16
, (6.5)

these equations are consistent, and give the following result

v1 = 1 +
63

32h6

(r0

r

)16
γ , v2 = 1 +

135

32h6

(r0

r

)16
γ . (6.6)

However, they are functions of r. This is inconsistent with our assumption that v1 and v2

are constants!. So it seems that the deformed geometry (3.1) is not the solution of equations

of motion when we consider higher derivative terms. Hence the entropy function formalism

does not work when higher derivative corrections are added to the effective action. The

same thing happens for M2 and M5-branes.

This is related to the fact that in the presence of the higher derivative terms the

solution is not the Schwarzschild AdS anymore. The ansatz for the metric should be [11]

ds2 = r2(−e2a+8bdt2 + e2bdr2 + d~x2) + e2cdΩ2
5 , (6.7)

where a, b and c are functions of r and we have chosen h = 1. The solution for these

functions at linear order of γ gives a metric which is not the Schwarzschild AdS [11]. Using

the ansatz (6.7), one realizes that the horizon area does not modify so the entropy is given

by (3.9) where now fλ is replaced by fλ + fW
λ , i.e.,

SBH = − 2πh2r4

r4 − 3r4
0

∂(fλ + fW
λ )

∂λ

∣

∣

∣

∣

λ=1

, (6.8)

where the function fW is given by

fW =
γ

16πG10

∫

dxH√−ge−
3
2
φW . (6.9)

The first term in (6.8) give the same result as before, i.e., (3.14). The second term is

proportional to γ, so to the first order of γ one has to replace the Schwarzschild AdS

solution (3.1) in
∂fW

λ
∂λ which gives

∂fW
λ

∂λ

∣

∣

∣

∣

λ=1

= −120
V3V5

16πG10

(r4 − 3r4
0)r

12
0

r13
. (6.10)

Finally the entropy will be

SBH =
V3V5h

2

4G10
r3
0

(

1 + 60γ + O(γ2)

)

. (6.11)

In terms of temperature [11], T = r0
π (1 + 15γ), one finds

SBH =
π2

2
N2V3T

3

(

1 + 15γ

)

. (6.12)

This is the entropy that has been found in [11] using the free energy formalism.
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7. Discussion

In this paper, we have studied in details the entropy function formalism for non-extremal

D3, M2 and M5-branes. We have shown that the entropy function can be applied to find

the entropy of these solutions at tree level. The entropy function in all cases has a saddle

point and the entropy is given by the value of this function at this point.

We have studied non-extremal black branes, which have either no moduli or constant

moduli. The non-extremal black holes which have non-constant moduli, has been studied

in [9]. One may expect that in this case also the entropy function should have a saddle

point. To see this more explicitly let us consider the 5 dimensional non-extremal black

holes in IIB theory compactified on T 4 × S1 with the following BTZ × S2 near horizon

geometry [9]:

ds2 = v1

[

−(ρ2 − ρ2
+)(ρ2 − ρ2

−)

ρ2
dt2 +

4ρ2

(ρ2 − ρ2
+)(ρ2 − ρ2

−)
dρ2

+ρ2

(

dz − ρ+ρ−
ρ2

dt

)2
]

+ v2dΩ2
2,

e−2φ = us, e2ψ = uT , e
ψ1
2 = u1,

F
(5)
tzρ = e1 =

ρu1

uT

v
3
2
1

v2
, H

(5)
θϕ = −1

2
sin θ, Gθϕ = −1

2
sin θ, (7.1)

where e2ψ and e
ψ1
2 denote the single moduli for T 4 and S1 respectively. We refer the reader

to [9] for details. The entropy function in this case is proportional to

F ∼ v
3
2
1 v2uT u1

[

us

(

3v2 − 4v1

2v1v2
+

1

2u2
1v

2
2

)

+
1

2v2
2

+
e2
1

2u2
1ρ

2v3
1

]

. (7.2)

The solution to the equations of motion

∂F

∂ui
= 0, i = s, T, 1,

∂F

∂vj
= 0, j = 1, 2, (7.3)

is v1 = v2 = v, us = 1
v , uT = 1, u1 = 1√

v
. As can be seen, these equations of motion cannot

fix all the moduli so one expects that the entropy function has a flat direction [3]. To study

the behavior of the entropy function around the above critical point, consider the following

matrix:

Mij = ∂φi
∂φj

F , φi = {v1, v2, us, uT , u1} . (7.4)

The eigenvalues of this matrix for v = 1 are

(4.81, −3.34, 2.23, 0.55, 0) . (7.5)

The negative eigenvalue indicates that the critical point is a saddle point. Moreover as

anticipated above one of the eigenvalues is zero.

We have seen in sections 3, 4 and 5 that the entropy function has one minimum and

one maximum in the directions specified by the sizes of AdSp+2 and SD−(p+2). This might
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be related to the fact that curvature of AdSp+2 is negative and the curvature of SD−(p+2) is

positive. This property should be independent of the attractiveness of the black holes. So

one expects that this property holds even for extremal solutions with AdSp+2 × SD−(p+2)

near horizon. To see this, consider the Dyonic black holes in Heterotic string theory

compactified on M ×S1× S̃1 where M is a four dimensional compact manifold and S1 and

S̃1 are circles [3]. The near horizon geometry is given by

ds2 = v1

(

− r2dt2 +
dr2

r2

)

+ v2

(

dθ2 + sin2 θdφ2

)

,

S = uS , R = uR , R̃ = uR̃ ,

F
(1)
rt = e1 , F

(3)
rt = e3 , F

(2)
θφ = p2 , F

(4)
θφ = p4 , (7.6)

where S is dilaton and R and R̃ are radii of the circles. The entropy function in terms of

the electric and magnetic charges q1, q3, p2, p4 is given by

F =
π

4
v1v2uS

[

2

v1
− 2

v2
+

8q2
1

u2
Ru2

Sv2
2

+
8u2

Rq2
3

u2
Sv2

2

+
2u2

R̃
p2
2

16π2v2
2

+
2p2

4

16π2u2
R̃

v2
2

]

+ 4πuS , (7.7)

where the charge quantization gives q1 = n
2 , q3 = w

2 , p2 = 4πk̃, p4 = 4πw̃. Solving equations

of motion gives rise to the following solutions for scalars

v1 = v2 = 4ñw̃ + 8 , uS =

√

nw

ñw̃ + 4
, uR =

√

n

w
, uR̃ =

√

w̃

ñ
. (7.8)

We can construct the following matrix as before:

Mij = ∂φi
∂φj

F , φi = {v1, v2, uS , uR, uR̃} , (7.9)

For the case that n = w = ñ = w̃ = 1 the eigenvalues are

(70.44, 28.10, 5.62, −0.11, 0.03) . (7.10)

We see that as expected the critical point is a saddle point.

The eigenvalues (7.5) and (7.10) indicate that the critical point in both non-extremal

and extremal solutions are the saddle points of the entropy function. However, the at-

tractiveness of the solutions cannot be seen from these eigenvalues. The attractiveness

can be studied either by the proper distance of an arbitrary point from the horizon [9] or

by looking at the effective potential for the moduli fields. The effective potential can be

read from the entropy function by inserting in the values of sizes v1 and v2. Doing this

one finds that the eigenvalues of the matrix Mij constructed from the effective potential,

have negative values in non-extremal case whereas for extremal case, all the eigenvalues

are positive.

The entropy function formalism works for those black holes/branes that their near

horizon is an extension of AdS space. The near horizon (throat approximation) of the

p-brane solutions (D3, M2, M5-branes) that we have studied are the Schwarzschild AdS

times sphere. For other p-branes this near horizon is not a product space so the entropy
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function formalism does not work. One may consider instead the near horizon (not the

throat approximation) of the non-extremal p-brane solutions which is a product of the

Rindler space times a sphere. It can easily be checked that the entropy function formalism

does not work for this space.2

We have seen in the section 6 that the higher derivative corrections modify the tree

level solutions such that the near horizon (throat approximation) is not the Schwarzschild

AdS anymore. Consequently, the entropy function formalism does not work for these cases.

Hence, we have used the Wald formula to find the value of entropy directly. It would be

interesting to find a non-extremal solution where the higher derivative corrections respect

the symmetries of the tree level solution i.e., AdS. In those cases, one would expect to

find the entropy function including the higher derivative corrections by using the entropy

function formalism [13].
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